Wednesday, 23 September 2020

Full Throttle: Remastered (PC) - Part 1

Full Throttle Remastered title screen
Remastered - Developer:Double Fine|Release Date:2017|Systems:Win, PS4, PS Vita
Original Game - Developer:LucasArts|Release Date:1995|Systems:MS-DOS, Win & Mac OS

This week on Super Adventures, it's the legendary LucasArts classic, Full Throttle! Remastered!

It seemed like a good time for me to get around to this one, with the original game's 25th anniversary being just around the corner. It came out on April 20th so I'm a month early, but Super Adventures is taking a break during April (and May) so I'm playing it now.

I've played the classic Full Throttle before, in fact I've beaten the game, but I've forgotten almost everything about it since then. I'm fairly sure I used a guide to get through it, but that doesn't necessarily mean anything. I used guides all the time back then, because assumed I wouldn't make it though a game without them.

I do know one thing about the game though: it actually sold pretty well, better than any LucasArts adventure that came before it (but maybe not as well as The Dig), which the company appreciated as it also cost a fortune (though maybe not as much as The Dig). It's possible that all the expensive CD-filling cutscenes were the reason the game was such a big hit for them, though some have theorised it was actually because it had a big explosion on the box art.

Okay, I don't usually do SPOILER warnings on Super Adventures, but I'm going to play through the first third of the game and spoil a big chunk of the puzzles and story, so you might not want to read this if you haven't played through it before.

Read on »

Tuesday, 22 September 2020

Types Of Projects

When I started writing articles on my site, sometimes I had great results, like writing the hexagonal grid guide in 6 weeks, and sometimes I had terrible results, like writing article about curved roads in 5 months. I eventually realized that the difference was that with hexagons, I understood the topic well, but with curved paths, I spent most of the time trying to understand the topic. To make matters worse, because I had a high standard for my articles, I spent too much time trying to polish the article about curved paths, even before I understood it well.

Back in 2013 I decided to create a separate directory /x/YYWW-name/ where I'd put the lower effort and experimental pages, numbered by year and week. For example, 1942-isometric means year 2019, week 42. Over the last few years I've realized I do two different types of projects:

  • fixed scope, variable time, usually focused on explaining something
  • variable scope, fixed time, usually focused on learning or understanding something

The fixed time articles typically go into /x/. An unexpected benefit of these short unpolished experiments is that sometimes it lets me explore a set of topics that comes together into a larger polished project. The best example of this is my map generation work in 2017–2018. Back in 2017 I had started experimenting with map generation topics:

This structure let me try things quickly, and also abandon things quickly. Those of you who know garbage collection algorithms know that there are two general strategies: throw away the garbage, or keep the non-garbage. In my regular projects I follow the "throw away garbage" strategy, but in this experimental folder I follow the "keep non-garbage" strategy. Things that work I can copy into a new project. Things that fail I leave alone. When I wanted to produce mapgen4 in 2018, I went back through these small projects and picked the parts I could use, and turned that into a new big project.

People ask me if I share links to all the /x/ pages. I don't do this because I found that by not sharing at first, it increases how much I write. I don't start every page worrying about how to explain something, or cross-browser compatibility, or making things work on any machine other than my own. If something works out, I can then fix it up and share it. Many things don't work out, and then I can abandon them quickly. This strategy has been extraordinarily successful at getting me to write more. I started these in 2013, with 7 pages, and then 11 in 2014, 20 in 2015, 24 in 2016, 33 in 2017, 36 in 2018, and 27 in 2019 so far. The downside is that it's so much easier to write the /x/ pages that I am not making many of the regular pages. I'm annoyed with myself for that but I'm just going to have to accept it for now.

Sunday, 13 September 2020

PUBG MOBILE 0.18.0 APK+OBB In PARTS Downlaod



=================================================================

SCREEN-SHOTS !!




=================================================================

DOWNLOAD PUBG MOBILE 0.18.0
APK+OBB (1.6 GB)

PART-1 (860MB)

PART-2 (800MB)

=================================================================

THANKS FOR VISITING OUR SITE !! 

Superbowl!

What's going on everyone?


Today for the #2019gameaday challenge dear ol' dad and I played a fun little game called Halftime Football during the Superbowl. 


We played usually only during commercials and had our quarters match up with the Superbowls quarters which was pretty entertaining. 


In the end dad ended up winning by slaughtering my generic "away team" 45 - 7!


All in all is was a fun evening and I may have to suggest us doing this every other game during the season or something. 


As always, thank you for reading and don't forget to stop and smell the meeples! :)

-Tim

Friday, 4 September 2020

Releasing On Nintendo Switch: Unattainable Dream To Reality

By Thomas Grip, Creative director

This is one of my earliest memories. Eons ago, when I was about 5, my dad took me with him to his work, a department store. He then proceeded to dump me in the electronics department.

Nowadays you can find game test booths everywhere, but back in the day this was definitely not the case. Instead every single item was locked inside a glass cupboard. Usually these cupboards remained locked unless you bought something… but that day was different. Tony, my dad's co-worker, let me try out a game.

As I trembled with the excitement of a 5-year-old boy, he jangled his keys, and took out the showcase version of a grey box called the Nintendo Entertainment System.

Ice Climber for the NES was my first video game experience, and from that moment I was hooked.

Since that watershed moment, Nintendo games have always had a special place in my heart. Super Mario, Zelda, Mega Man, Battle Toads, Blaster Master and many others were all a part of my childhood magic. The plastic feel of the controller, the chunky cartridges, and instant-booting games still evoke fuzzy feelings in me.

Because of these magical childhood memories, and how video games were perceived back in the day, Nintendo has always had a certain mysterious feel to it – like an enchanted factory in a far-away country, creating games through some sort of wizardry.

When I started making games myself, some 20 years back, I never thought the hobby would evolve into anything bigger. It felt highly unlikely that people would want to buy anything I produced. But, eventually, what started as a hobby turned into a job. That felt so surreal. There I was, with my stupid hobby, except it was suddenly a source of income to me. Game development still felt like that enchanted factory, full of people who knew a lot more than me with tech I couldn't possibly afford to have. But it was real, as I came to realize over time.

Yet consoles, and especially Nintendo, retained a very illusory feel. While I released my games on Steam and similar stores, the birthplace of my childhood magic felt far off.
That's why it's so special to announce the following:

AMNESIA: COLLECTION IS NOW OUT ON THE NINTENDO SWITCH


Finally – Frictional Games has made it to a Nintendo console! What had, for most of my life, felt like a distant and far-fetched dream, has now become reality. Sure, it's not shipped on one of those fantastic grey cartridges, nor will it have a Nintendo "seal of quality" slapped on top, but I'll take what I can.

If the 5-year-old me heard about this, he would never believe me.

But this is by no means the end of a journey for me – quite the opposite! It's thrilling to think just how far the company has come, and it makes me super excited for what the future will hold.


A huge thank you to our friends at BlitWorks for making the port possible, and Evolve PR (with special thanks to Ryan!) for the great trailer!

Monday, 31 August 2020

QakBot Banking Trojan Returned With New Sneaky Tricks To Steal Your Money

A notorious banking trojan aimed at stealing bank account credentials and other financial information has now come back with new tricks up its sleeve to target government, military, and manufacturing sectors in the US and Europe, according to new research. In an analysis released by Check Point Research today, the latest wave of Qbot activity appears to have dovetailed with the return of

via The Hacker News

Related word


Sunday, 30 August 2020

What Is Cybercrime? What Are The Types Of Cybercrime? What Is Cyberlaw In India?

What is cyber crime?

Cybercrime is the use of computers & networks to perform illegal activities such as spreading viruses,online  bullying,performing unauthorized electronic fund transfers etc. Most cyber crimes are committed through the internet.
Some cyber crime also be carried out using mobile phones via Sms and online chatting applications.

TYPES OF CYBERCRIME

The following list presents the common types of cybercrimes-

1-Computer Fraud-Intential deception for personal gain via the use of computer system.

2-Privacy Violations-Exposing personal information such as email addresses,phone numbers,account details etc, on social media,websites,etc.

3-Identity theft-Stealing personal information from somebody and impersonating that person.

4-Sharing copyright files/information-This involves distributing copyright protected files such as eBooks and computer program etc.

5-Electronic funds transfer-This involves gaining an unauthorized access to bank computer networks and making illegal funds transferring.

6-Electronic money laundering-This involves the use of the computer to launder money.

7-Atm fraud-This involves intercepting ATM card details such as account numbers and PIN numbers.These details are then used to withdraw funds from the intercepted accounts.

8-Denial of service attack-This involves the use of computers in multiple locations to attack servers with a view of shutting them down.

9-Spam:sending unauthorized emails.
These emails usually contain advertisements.


CYBER LAW

Under The Information Technology Act,2000 
CHAPTER XI-OFFENCES-66. Hacking with computer system.

1-whoever with the Intent to cause or knowing that he is likely to cause Wrongfull Loss or Damage to the public or any person Destroys or Deletes or Alter any Information Residing in computer Resource or diminishes its value or utility or affects it injuriously by any means, commits hack.

2-whoever commits hacking shell be punished with imprisonment up to three years, or  with fine which may extend up to two lakh rupees,or with both.
Related links
  1. Hacker Search Tools
  2. How To Install Pentest Tools In Ubuntu
  3. Hacking Tools Mac
  4. Hacker Tools Apk
  5. Hacker Tools For Windows
  6. Pentest Tools For Android
  7. Termux Hacking Tools 2019
  8. Hak5 Tools
  9. Hacker Search Tools
  10. What Are Hacking Tools
  11. Hacking Tools For Mac
  12. Hacker Tools Free
  13. Hack Tools Pc
  14. Hacking Tools Name
  15. Pentest Tools Android
  16. Hacker Tools 2019
  17. Pentest Tools Linux
  18. Hack Apps
  19. Pentest Tools Alternative
  20. Tools For Hacker
  21. Hack Tool Apk
  22. Hacking Tools Github
  23. Hacking Tools For Beginners
  24. Hack Tools
  25. Pentest Tools For Mac
  26. Hack Tools Pc
  27. Pentest Tools Port Scanner
  28. Hacker Tools For Windows
  29. Hacking Tools For Windows Free Download
  30. Hacking Tools Github
  31. Hacking Tools For Kali Linux
  32. Hacker Tools Apk
  33. Hacking Tools Name
  34. Best Pentesting Tools 2018
  35. Easy Hack Tools
  36. Hacking Tools For Mac
  37. Pentest Tools Framework
  38. Pentest Tools Online
  39. Hack Tool Apk No Root
  40. What Is Hacking Tools
  41. Hacking Tools Free Download
  42. Pentest Tools Free
  43. Hacking Tools For Mac
  44. Hack Tools For Games
  45. Hacking Tools Name
  46. Hacking Tools For Kali Linux
  47. Pentest Tools For Windows
  48. Hacker Tools For Windows
  49. Hacking Tools Software
  50. Pentest Tools Kali Linux
  51. Hacker Hardware Tools
  52. Hacker Tools Apk
  53. Growth Hacker Tools
  54. Pentest Tools Find Subdomains
  55. Pentest Tools Framework
  56. Hacking Tools
  57. Hacker Tools Free Download
  58. Pentest Tools Url Fuzzer
  59. Hacking Tools Name
  60. Black Hat Hacker Tools
  61. Pentest Tools Nmap
  62. Pentest Tools List
  63. Hacking Tools
  64. Hack Tools Pc
  65. Hacker Tools Github
  66. What Is Hacking Tools
  67. Hacker Tools Windows
  68. Hacker Search Tools
  69. Pentest Tools Subdomain
  70. Install Pentest Tools Ubuntu
  71. Hack Tools Mac
  72. Pentest Tools For Android
  73. Hacker Tools Hardware
  74. Hacker Tools Linux
  75. Hacker Tools Apk
  76. Ethical Hacker Tools
  77. Hacks And Tools
  78. Hack Tools Mac
  79. Hack Tools For Windows
  80. Hacker Hardware Tools
  81. Hacker
  82. Hak5 Tools
  83. Hacking Tools Free Download
  84. Hacker Tools Online
  85. Physical Pentest Tools
  86. Top Pentest Tools
  87. Hacking Tools Windows
  88. Easy Hack Tools
  89. Ethical Hacker Tools
  90. Pentest Tools Android
  91. Pentest Tools For Windows
  92. Hacker Hardware Tools
  93. Hack Apps
  94. Hak5 Tools
  95. Beginner Hacker Tools
  96. Hacker Tools Free
  97. Hacking Tools Mac
  98. Hacker Techniques Tools And Incident Handling
  99. New Hacker Tools
  100. World No 1 Hacker Software
  101. Easy Hack Tools
  102. Hack Tools Mac
  103. Tools 4 Hack
  104. Hacking App
  105. Hacker Tools For Mac
  106. Hacker Tools Linux
  107. Pentest Tools Free
  108. Hacking Tools For Windows
  109. Hacking Tools
  110. Hacker Tools For Ios
  111. Hacker Tools List
  112. Hack Tools For Mac
  113. Beginner Hacker Tools
  114. Nsa Hacker Tools
  115. Kik Hack Tools
  116. Tools Used For Hacking
  117. Hack Rom Tools
  118. Hacking Tools For Beginners
  119. Hack Tools For Ubuntu
  120. Tools Used For Hacking
  121. Pentest Tools Framework
  122. Hacking Tools Name
  123. Hacker Tools Apk
  124. Hacker Hardware Tools
  125. Hacker Tools Mac

CTF: FluxFingers4Future - Evil Corp Solution

For this years hack.lu CTF I felt like creating a challenge. Since I work a lot with TLS it was only natural for me to create a TLS challenge. I was informed that TLS challenges are quite uncommon but nevertheless I thought it would be nice to spice the competition up with something "unusual". The challenge mostly requires you to know a lot of details on how the TLS record layer and the key derivation works. The challenge was only solved by one team (0ops from China) during the CTF. Good job!



So let me introduce the challenge first.

The Challenge


You were called by the incident response team of Evil-Corp, the urgently need your help. Somebody broke into the main server of the company, bricked the device and stole all the files! Nothing is left! This should have been impossible. The hacker used some secret backdoor to bypass authentication. Without the knowledge of the secret backdoor other servers are at risk as well! The incident response team has a full packet capture of the incident and performed an emergency cold boot attack on the server to retrieve the contents of the memory (its a really important server, Evil Corp is always ready for such kinds of incidents). However they were unable to retrieve much information from the RAM, what's left is only some parts of the "key_block" of the TLS server. Can you help Evil-Corp to analyze the exploit the attacker used?

(Flag is inside of the attackers' secret message).


TT = Could not recover

key_block:
6B 4F 93 6A TT TT TT TT  TT TT 00 D9 F2 9B 4C B0
2D 88 36 CF B0 CB F1 A6  7B 53 B2 00 B6 D9 DC EF
66 E6 2C 33 5D 89 6A 92  ED D9 7C 07 49 57 AD E1
TT TT TT TT TT TT TT TT  56 C6 D8 3A TT TT TT TT
TT TT TT TT TT TT TT TT  94 TT 0C EB 50 8D 81 C4
E4 40 B6 26 DF E3 40 9A  6C F3 95 84 E6 C5 86 40
49 FD 4E F2 A0 A3 01 06

If you are not interested in the solution and want to try the challenge on your own first, do not read past this point. Spoilers ahead.


The Solution

So lets analyze first what we got. We have something called a "key_block" but we do not have all parts of it. Some of the bytes have been destroyed and are unknown to us. Additionally, we have a PCAP file with some weird messages in them. Lets look at the general structure of the message exchange first.



So looking at the IP address and TCP ports we see that the attacker/client was 127.0.0.1:36674 and was talking with the Server 127.0.0.1:4433. When looking at the individual messages we can see that the message exchange looked something like this:

ENC HS MESSAGE .... ENC HS MESSAGE ->
<- SERVER HELLO, CERTIFICATE, SERVER HELLO DONE
ENC HS MESSAGE .... ENC HS MESSAGE CCS ENC HS MESSAGE, ENC HS MESSAGE ->
<-CCS, ENC HS MESSAGE
ENC HEARTBEAT ->
<- ENC HEARTBEAT
-> ENC APPLICATION DATA
<- INTERNAL ERROR ... INTERNAL ERROR

So this message exchange appears weird. Usually the client is supposed to send a ClientHello in the beginning of the connection, and not encrypted handshake messages. The same is true for the second flight of the client. Usually it transmits its ClientKeyExchange message here, then a ChangeCipherSpec message and finally its Finished message. If we click at the first flight of the client, we can also see some ASCII text fragments in its messages.

Furthermore we can assume that the message sent after the ChangeCipherSpec from the server is actually a TLS Finished message.

Since we cannot read a lot from the messages the client is sending (in Wireshark at least), we can look at the messages the server is sending to get a better hold of what is going on. In the ServerHello message the server selects the parameters for the connection. This reveals that this is indeed a TLS 1.1 connection with TLS_RSA_WITH_AES_256_CBC_SHA , no compression and the Heartbeat Extension negotiated. We can also see that the ServerRandom is: 1023047c60b420bb3321d9d47acb933dbe70399bf6c92da33af01d4fb770e98c (note that it is always 32 bytes long, the UNIX time is part of the ServerRandom).

Looking at the certificate the server sent we can see that the server used a self-signed certificate for Evil.corp.com with an 800-bit RSA modulus:

00ad87f086a4e1acd255d1d77324a05ea7d250f285f3a6de35b9f07c5d083add5166677425b8335328255e7b562f944d55c56ff084f4316fdc9e3f5b009fefd65015a5ca228c94e3fd35c6aba83ea4e20800a34548aa36a5d40e3c7496c65bdbc864e8f161

and the public exponent 65537.


If you pay very close attention to the handshake you can see another weird thing. The size of the exchanged HeartbeatMessages is highly uneven. The client/attacker sent 3500 bytes, the server is supposed to decrypt these messages, and reflect the contents of them. However, the Server sent ~64000 bytes instead. The heartbeat extension became surprisingly well known in 2014, due to the Heartbleed bug in OpenSSL. The bug causes a buffer over-read on the server, causing it to reflect parts of its memory content in return to malicious heartbeat requests. This is a good indicator that this bug might play a role in this challenge.

But what is this key_block thing we got from the incident response team? TLS 1.1 CBC uses 4 symmetric keys in total. Both parties derive these keys from the "master secret" as the key_block. This key_block is then chunked into the individual keys. You can imagine the key_block as some PRF output and both parties knowing which parts of the output to use for which individual key. In TLS 1.1 CBC the key_block is chunked as follows: The first N bytes are the client_write_MAC key, the next N bytes are the server_write_MAC key, the next P bytes are the client_write key and the last P bytes are the server_write key. N is the length of the HMAC key (which is at the time of writing for all cipher suites the length of the HMAC) and P is the length of the key for the block cipher.

In the present handshake AES-256 was negotiated as the block cipher and SHA (SHA-1) was negotiated for the HMAC. This means that N is 20 (SHA-1 is 20 bytes) and P is 32 (AES-256 requires 32 bytes of key material).

Looking at the given key_block we can chunk it into the individual keys:
client_write_MAC = 6B4F936ATTTTTTTTTTTT00D9F29B4CB02D8836CF
server_write_MAC = B0CBF1A67B53B200B6D9DCEF66E62C335D896A92
client_write = EDD97C074957ADE1TTTTTTTTTTTTTTTT56C6D83ATTTTTTTTTTTTTTTTTTTTTTTT
server_write = 94TT0CEB508D81C4E440B626DFE3409A6CF39584E6C5864049FD4EF2A0A30106

Since not all parts of the key_block are present, we can see that we actually have 14/20 bytes of the client_write_MAC key, the whole server_write_MAC key, 12/32 bytes of the client_write key and 31/32 bytes of the server_write key.

The client_write_MAC key is used in the HMAC computations from the client to the server (the server uses the same key to verify the HMAC),
The server_write_MAC key is used in the HMAC computations from the server to the client (the client uses the same key to verify the HMAC),
The client_write key is used to encrypt messages from the client to the server, while the server_write key is used to encrypt messages from the server to the client.

So looking at the keys we could compute HMAC's from the client if we could guess the remaining 6 bytes. We could compute HMAC's from the server directly, we have not enough key material to decrypt the client messages, but we could decrypt server messages if we brute-forced one byte of the server_write key. But how would you brute force this byte? When do we know when we got the correct key? Lets look at how the TLS record layer works to find out :)

The Record Layer

TLS consists out of multiple protocols (Handshake, Alert, CCS, Application (and Heartbeat)). If one of those protocols wants to send any data, it has to pass this data to the record layer. The record layer will chunk this data, compress it if necessary, encrypt it and attach a "record header" to it.


This means, that if we want to decrypt a message we know that if we used the correct key the message should always have a correct padding. If we are unsure we could even check the HMAC with the server_write_MAC key.

In TLS 1.0 - TLS 1.2 the padding looks like this:

1 byte padding  : 00
2 bytes padding: 01 01
3 bytes padding: 02 02 02
4 bytes padding: 03 03 03 03
...

So if we guessed the correct key we know that the plaintext has to have valid padding.
An ideal candidate for our brute force attack is the server Finished message. So lets use that to check our key guesses.
The ciphertext looks like this:
0325f41d3ebaf8986da712c82bcd4d55c3bb45c1bc2eacd79e2ea13041fc66990e217bdfe4f6c25023381bab9ddc8749535973bd4cacc7a4140a14d78cc9bddd


The first 16 bytes of the ciphertext are the IV:
IV: 0325f41d3ebaf8986da712c82bcd4d55
Therefore the actual ciphertext is:
Ciphertext: c3bb45c1bc2eacd79e2ea13041fc66990e217bdfe4f6c25023381bab9ddc8749535973bd4cacc7a4140a14d78cc9bddd

The 256 key candidates are quick to check, and it is revealed that 0xDC was the missing byte.
(The plaintext of the Finished is 1400000C455379AAA141E1B9410B413320C435DEC948BFA451C64E4F30FE5F6928B816CA0B0B0B0B0B0B0B0B0B0B0B0B)

Now that we have the full server_write key we can use it to decrypt the heartbeat records.

This is done in the same way as with the Finished. Looking at the decrypted heartbeat messages we can see a lot of structured data, which is an indicator that we are actually dealing
with the Heartbleed bug. If we convert the content of the heartbeat messages to ASCII we can actually see that the private key of the server is PEM encoded in the first heartbeat message.

Note: This is different to a real heartbeat exploit. Here you don't usually get the private key nicely encoded but have to extract it using the coppersmith's attack or similar things. I did not want to make this challenge even harder so I was so nice to write it to the memory for you :)


The private key within the Heartbeat messages looks like this:
-----BEGIN RSA PRIVATE KEY-----
MIIB3gIBAAJlAK2H8Iak4azSVdHXcySgXqfSUPKF86beNbnwfF0IOt1RZmd0Jbgz
UyglXntWL5RNVcVv8IT0MW/cnj9bAJ/v1lAVpcoijJTj/TXGq6g+pOIIAKNFSKo2
pdQOPHSWxlvbyGTo8WECAwEAAQJkJj95P2QmLb5qlgbj5SXH1zufBeWKb7Q4qVQd
RTAkMVXYuWK7UZ9Wa9nYulyjvg9RoWOO+SaDNqhiTWKosQ+ZrvG3A1TDMcVZSkPx
bXCuhhRpp4j0T9levQi0s8tR1YuFzVFi8QIzANNLrgK2YOJiDlyu78t/eVbBey4m
uh2xaxvEd8xGX4bIBlTuWlKIqwPNxE8fygmv4uHFAjMA0j7Uk1ThY+UCYdeCm4/P
eVqkPYu7jNTHG2TGr/B6hstxyFpXBlq6MJQ/qPdRXLkLFu0CMwCf/OLCTQPpBiQn
y5HoPRpMNW4m0M4F46vdN5MaCoMUU+pvbpbXfYI3/BrTapeZZCNfnQIzAJ7XzW9K
j8cTPIuDcS/qpQvAiZneOmKaV5vAtcQzYb75cgu3BUzNuyH8v2P/Br+RJmm5AjMA
jp9N+xdEm4dW51lyUp6boVU6fxZimfYRfYANU2bVFmbsSAU9jzjWb0BuXexKKcX7
XGo=
-----END RSA PRIVATE KEY-----

We should store it in a file and decode it with OpenSSL to get the actual key material.

>> openssl rsa -in key.pem -text -noout
RSA Private-Key: (800 bit, 2 primes)
modulus:
    00:ad:87:f0:86:a4:e1:ac:d2:55:d1:d7:73:24:a0:
    5e:a7:d2:50:f2:85:f3:a6:de:35:b9:f0:7c:5d:08:
    3a:dd:51:66:67:74:25:b8:33:53:28:25:5e:7b:56:
    2f:94:4d:55:c5:6f:f0:84:f4:31:6f:dc:9e:3f:5b:
    00:9f:ef:d6:50:15:a5:ca:22:8c:94:e3:fd:35:c6:
    ab:a8:3e:a4:e2:08:00:a3:45:48:aa:36:a5:d4:0e:
    3c:74:96:c6:5b:db:c8:64:e8:f1:61
publicExponent: 65537 (0x10001)
privateExponent:
    26:3f:79:3f:64:26:2d:be:6a:96:06:e3:e5:25:c7:
    d7:3b:9f:05:e5:8a:6f:b4:38:a9:54:1d:45:30:24:
    31:55:d8:b9:62:bb:51:9f:56:6b:d9:d8:ba:5c:a3:
    be:0f:51:a1:63:8e:f9:26:83:36:a8:62:4d:62:a8:
    b1:0f:99:ae:f1:b7:03:54:c3:31:c5:59:4a:43:f1:
    6d:70:ae:86:14:69:a7:88:f4:4f:d9:5e:bd:08:b4:
    b3:cb:51:d5:8b:85:cd:51:62:f1
prime1:
    00:d3:4b:ae:02:b6:60:e2:62:0e:5c:ae:ef:cb:7f:
    79:56:c1:7b:2e:26:ba:1d:b1:6b:1b:c4:77:cc:46:
    5f:86:c8:06:54:ee:5a:52:88:ab:03:cd:c4:4f:1f:
    ca:09:af:e2:e1:c5
prime2:
    00:d2:3e:d4:93:54:e1:63:e5:02:61:d7:82:9b:8f:
    cf:79:5a:a4:3d:8b:bb:8c:d4:c7:1b:64:c6:af:f0:
    7a:86:cb:71:c8:5a:57:06:5a:ba:30:94:3f:a8:f7:
    51:5c:b9:0b:16:ed
exponent1:
    00:9f:fc:e2:c2:4d:03:e9:06:24:27:cb:91:e8:3d:
    1a:4c:35:6e:26:d0:ce:05:e3:ab:dd:37:93:1a:0a:
    83:14:53:ea:6f:6e:96:d7:7d:82:37:fc:1a:d3:6a:
    97:99:64:23:5f:9d
exponent2:
    00:9e:d7:cd:6f:4a:8f:c7:13:3c:8b:83:71:2f:ea:
    a5:0b:c0:89:99:de:3a:62:9a:57:9b:c0:b5:c4:33:
    61:be:f9:72:0b:b7:05:4c:cd:bb:21:fc:bf:63:ff:
    06:bf:91:26:69:b9
coefficient:
    00:8e:9f:4d:fb:17:44:9b:87:56:e7:59:72:52:9e:
    9b:a1:55:3a:7f:16:62:99:f6:11:7d:80:0d:53:66:
    d5:16:66:ec:48:05:3d:8f:38:d6:6f:40:6e:5d:ec:
    4a:29:c5:fb:5c:6a

So now we got the private key. But what do we do with it? Since this is an RSA handshake we should be able to decrypt the whole session (RSA is not perfect forward secure). Loading it into Wireshark does not work, as Wireshark is unable to read the messages sent by the client. What is going on there?

De-fragmentation


So if you do not yet have a good idea of what the record layer is for, you can imagine it like envelops. If someone wants to send some bytes, you have to put them in an envelop and transmit them. Usually implementations use one big envelop for every message, however you can also send a single message in multiple envelops.

The attacker did exactly that. He fragmented its messages into multiple records. This is not very common for handshake messages but fine according to the specification and accepted by almost all implementations. However, Wireshark is unable to decode these kinds of messages and therefore unable to use our private key to decrypt the connection. So we have to do this step manually.

So each record has the following fields:
Type | Version | Length | Data
If we want to reconstruct the ClientHello message we have to get all the data fields of the records of the first flight and decode them.
This is simply done by clicking on each record in Wireshark and concatenating the data fields. This step is at least on my Wireshark version (3.0.5) not very easy as the copying is actually buggy, and Wireshark is not copying the correct bytes.

 As you can see in the image, the record is supposed to have a length of 8 bytes, but Wireshark is only copying 4 bytes. I am not sure if this bug is actually only in my version or affects all Wireshark versions. Instead of copying the records individually I therefore copied the whole TCP payload and chunked it manually into the individual records.

16030200080100009e03020000
160302000800000000004e6f62
16030200086f64796b6e6f7773
1603020008696d616361740000
16030200080000000000002053
1603020008746f70206c6f6f6b
1603020008696e67206e6f7468
1603020008696e6720746f2066
1603020008696e646865726500
16030200080200350100005300
16030200080f00010113370015
16030200084576696c436f7270
1603020008206b696c6c732070
1603020008656f706c65000d00
16030200082c002a0102020203
16030200080204020502060201
16030200080102010301040105
16030200080106010103020303
160302000803040305030603ed
1603020008edeeeeefefff0100
16030200020100

If we structure this data it looks like this:
Type  Version Length  Payload
16    0302    0008    0100009e03020000
16    0302    0008    00000000004e6f62
16    0302    0008    6f64796b6e6f7773
16    0302    0008    696d616361740000
16    0302    0008    0000000000002053
16    0302    0008    746f70206c6f6f6b
16    0302    0008    696e67206e6f7468
16    0302    0008    696e6720746f2066
16    0302    0008    696e646865726500
16    0302    0008    0200350100005300
16    0302    0008    0f00010113370015
16    0302    0008    4576696c436f7270
16    0302    0008    206b696c6c732070
16    0302    0008    656f706c65000d00
16    0302    0008    2c002a0102020203
16    0302    0008    0204020502060201
16    0302    0008    0102010301040105
16    0302    0008    0106010103020303
16    0302    0008    03040305030603ed
16    0302    0008    edeeeeefefff0100
16    0302    0002    0100

The actual message is the concatenation of the record payloads:

0100009e0302000000000000004e6f626f64796b6e6f7773696d6163617400000000000000002053746f70206c6f6f6b696e67206e6f7468696e6720746f2066696e64686572650002003501000053000f000101133700154576696c436f7270206b696c6c732070656f706c65000d002c002a010202020302040205020602010102010301040105010601010302030303040305030603ededeeeeefefff01000100

So what is left is to parse this message. There is an easy way on how to do this an a labor intensive manual way. Lets do the manual process first :) .
We know from the record header that his message is in fact a handshake message (0x16).
According to the specification handshake messages look like this:
    
      struct {
          HandshakeType msg_type;    /* handshake type */
          uint24 length;             /* bytes in message */
          select (HandshakeType) {
              case hello_request:       HelloRequest;
              case client_hello:        ClientHello;
              case server_hello:        ServerHello;
              case certificate:         Certificate;
              case server_key_exchange: ServerKeyExchange;
              case certificate_request: CertificateRequest;
              case server_hello_done:   ServerHelloDone;
              case certificate_verify:  CertificateVerify;
              case client_key_exchange: ClientKeyExchange;
              case finished:            Finished;
          } body;
      } Handshake;
    
This is RFC speak for: Each handshake message starts with a type field which says which handshake message this is, followed by a 3 byte length field which determines the length of rest of the handshake message.
So in our case the msg_type is 0x01 , followed by a 3 Byte length field (0x00009e, 158[base10]). 0x01 means ClientHello (https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-7). This means we have to parse the bytes after the length field as a ClientHello.
    
      {
          ProtocolVersion client_version;
          Random random;
          SessionID session_id;
          CipherSuite cipher_suites<2..2^16-2>;
          CompressionMethod compression_methods<1..2^8-1>;
          select (extensions_present) {
              case false:
                  struct {};
              case true:
                  Extension extensions<0..2^16-1>;
          };
      } ClientHello;

This means: The next 2 bytes are the ProtocolVersion, the next 32 bytes are the ClientRandom, the next byte is the SessionID Length, the next SessionID Length many bytes are the SessionID, the next 2 bytes are the CipherSuite Length bytes, followed by CipherSuite Length many CipherSuites, followed by a 1 byte Compression Length field, followed by Compression Length many CompressionBytes followed by a 2 byte Extension Length field followed by extension length many ExtensionBytes. So lets try to parse this:

Handshakye Type   : 01
Handshake Length  : 00009e
ProtocolVersion   : 0302
ClientRandom      : 000000000000004e6f626f64796b6e6f7773696d616361740000000000000000
SessionID Length  : 20
SessionID         : 53746f70206c6f6f6b696e67206e6f7468696e6720746f2066696e6468657265
CipherSuite Length: 0002
CipherSuites      : 0035
Compression Length: 01
CompressionBytes  : 00
Extension Length  : 0053
ExtensionBytes:   : 000f000101133700154576696c436f7270206b696c6c732070656f706c65000d002c002a010202020302040205020602010102010301040105010601010302030303040305030603ededeeeeefefff01000100

This is manual parsing is the slow method of dealing with this. Instead of looking at the specification to parse this message we could also compare the message structure to another ClientHello. This eases this process a lot. What we could also do is record the transmission of this message as a de-fragmented message to something and let Wireshark decode it for us. To send the de-fragmented message we need to create a new record header ourselves. The record should look like this:

Type   : 16
Version: 0302
Length : 00A2
Payload: 0100009e0302000000000000004e6f626f64796b6e6f7773696d6163617400000000000000002053746f70206c6f6f6b696e67206e6f7468696e6720746f2066696e64686572650002003501000053000f000101133700154576696c436f7270206b696c6c732070656f706c65000d002c002a010202020302040205020602010102010301040105010601010302030303040305030603ededeeeeefefff01000100

To send this record we can simply use netcat:


echo '16030200A20100009e0302000000000000004e6f626f64796b6e6f7773696d6163617400000000000000002053746f70206c6f6f6b696e67206e6f7468696e6720746f2066696e64686572650002003501000053000f000101133700154576696c436f7270206b696c6c732070656f706c65000d002c002a010202020302040205020602010102010301040105010601010302030303040305030603ededeeeeefefff01000100' | xxd -r -p | nc localhost 4433


Now we can use Wireshark to parse this message. As we can see now, the weired ASCII fragments we could see in the previous version are actually the ClientRandom, the SessionID, and a custom extension from the attacker. Now that we have de-fragmented the message, we know the ClientRandom: 000000000000004e6f626f64796b6e6f7773696d616361740000000000000000


De-fragmenting the ClientKeyExchange message


Now that we have de-fragmented the first flight from the attacker, we can de-fragment the second flight from the client. We can do this in the same fashion as we de-fragmented the ClientHello.

16    0302    0008    1000006600645de1
16    0302    0008    66a6d3669bf21936
16    0302    0008    5ef3d35410c50283
16    0302    0008    c4dd038a1b6fedf5
16    0302    0008    26d5b193453d796f
16    0302    0008    6e63c144bbda6276
16    0302    0008    3740468e21891641
16    0302    0008    0671318e83da3c2a
16    0302    0008    de5f6da6482b09fc
16    0302    0008    a5c823eb4d9933fe
16    0302    0008    ae17d165a6db0e94
16    0302    0008    bb09574fc1f7b8ed
16    0302    0008    cfbcf9e9696b6173
16    0302    0002    f4b6

14    0302    0001    01

16    0302    0030    cbe6bf1ae7f2bc40a49709a06c0e3149a65b8cd93c2525b5bfa8f696e29880d3447aef3dc9a996ca2aff8be99b1a4157
16    0302    0030    9bf02969ca42d203e566bcc696de08fa80e0bfdf44b1b315aed17fe867aed6d0d600c73de59c14beb74b0328eacadcf9

Note that his time we have 3 record groups. First there is chain of handshake records, followed by a ChangeCipherSpec record, followed by 2 more handshake records. The TLS specification forbids that records of different types are interleaved. This means that the first few records a probably forming a group of messages. The ChangeCipherSpec record is telling the server that subsequent messages are encrypted. This seems to be true, since the following records do not appear to be plaintext handshake messages.

So lets de-fragment the first group of records by concatenating their payloads:

1000006600645de166a6d3669bf219365ef3d35410c50283c4dd038a1b6fedf526d5b193453d796f6e63c144bbda62763740468e218916410671318e83da3c2ade5f6da6482b09fca5c823eb4d9933feae17d165a6db0e94bb09574fc1f7b8edcfbcf9e9696b6173f4b6

Since this is a handshake message, we know that the first byte should tell us which handshake message this is. 0x10 means this is a ClientKeyExchange message. Since we already know that TLS_RSA_WITH_AES_256_CBC_SHA was negotiated for this connection, we know that this is an RSA ClientKeyExchange message.

These messages are supposed to look like this (I will spare you the lengthy RFC definition):

Type (0x10)
Length (Length of the content) (3 bytes)
EncryptedPMS Length(Length of the encrypted PMS) (2 bytes)
EncrpytedPMS  (EncryptedPMS Length many bytes)
    
For our message this should look like this:

Type: 10
Length: 000066
Encrypted PMS Length: 0064
Encrypted PMS: 5de166a6d3669bf219365ef3d35410c50283c4dd038a1b6fedf526d5b193453d796f6e63c144bbda62763740468e218916410671318e83da3c2ade5f6da6482b09fca5c823eb4d9933feae17d165a6db0e94bb09574fc1f7b8edcfbcf9e9696b6173f4b6

Now that we got the Encrypted PMS we can decrypt it with the private key. Since the connection negotiated RSA as the key exchange algorithm this is done with:

encPMS^privKey mod modulus = plainPMS

We can solve this equation with the private key from the leaked PEM file.

2445298227328938658090475430796587247849533931395726514458166123599560640691186073871766111778498132903314547451268864032761115999716779282639547079095457185023600638251088359459150271827705392301109265654638212139757207501494756926838535350 ^ 996241568615939319506903357646514527421543094912647981212056826138382708603915022492738949955085789668243947380114192578398909946764789724993340852568712934975428447805093957315585432465710754275221903967417599121549904545874609387437384433 mod 4519950410687629988405948449295924027942240900746985859791939647949545695657651701565014369207785212702506305257912346076285925743737740481250261638791708483082426162177210620191963762755634733255455674225810981506935192783436252402225312097

Solving this equation gives us:

204742908894949049937193473353729060739551644014729690547520028508481967333831905155391804994508783506773012994170720979080285416764402813364718099379387561201299457228993584122400808905739026823578773289385773545222916543755807247900961

in hexadecimal this is:

00020325f41d3ebaf8986da712c82bcd4d554bf0b54023c29b624de9ef9c2f931efc580f9afb081b12e107b1e805f2b4f5f0f1000302476574204861636b6564204e6f6f622c20796f752077696c6c206e65766572206361746368206d65212121212121

The PMS is PKCS#1.5 encoded. This means that it is supposed to start with 0x0002 followed by a padding which contains no 0x00 bytes, followed by a separator 0x00 byte followed by a payload. In TLS, the payload has to be exactly 48 bytes long and has to start with the highest proposed protocol version of the client. We can see that this is indeed the case for our decrypted payload. The whole decrypted payload is the PMS for the connection.

This results in the PMS: 0302476574204861636b6564204e6f6f622c20796f752077696c6c206e65766572206361746368206d65212121212121 (which besides the protocol version is also ASCII :) )

Now that we have the PMS its time to revisit the key scheduling in TLS. We already briefly touched it but here is a overview:

As you can see, we first have to compute the master secret. With the master secret we can reconstruct the key_block. If we have computed the key_block, we can finally get the client_write key and decrypt the message from the attacker.


master secret = PRF ( PMS, "master secret", ClientRandom | ServerRandom)

key_block = PRF (master_secret, "key expansion", ServerRandom |  ClientRandom )

Where "master secret" and "key expansion" are literally ASCII Strings.


Note that in the key_block computation ClientRandom and ServerRandom are exchanged.



To do this computation we can either implement the PRF ourselfs, or easier, steal it from somewhere. The PRF in TLS 1.1 is the same as in TLS 1.0. Good places to steal from are for example openssl (C/C++), the scapy project (python), the TLS-Attacker project (java) or your favourite TLS library. The master secret is exactly 48 bytes long. The length of the key_block varies depending on the selected cipher suite and protocol version. In our case we need 2 * 20 bytes (for the 2 HMAC keys) + 2 * 32 bytes (for the 2 AES keys) = 104 bytes.

I will use the TLS-Attacker framework for this computation. The code will look like this:


This results in the following master secret: 292EABADCF7EFFC495825AED17EE7EA575E02DF0BAB7213EC1B246BE23B2E0912DA2B99C752A1F8BD3D833E8331D649F  And the following key_block:
6B4F936ADE9B4010393B00D9F29B4CB02D8836CFB0CBF1A67B53B200B6D9DCEF66E62C335D896A92EDD97C074957ADE136D6BAE74AE8193D56C6D83ACDE6A3B365679C5604312A1994DC0CEB508D81C4E440B626DFE3409A6CF39584E6C5864049FD4EF2A0A30106

Now we can chunk our resulting key_block into its individual parts. This is done analogously to the beginning of the challenge.

client_write_mac key = 6B4F936ADE9B4010393B00D9F29B4CB02D8836CF
server_write_mac key = B0CBF1A67B53B200B6D9DCEF66E62C335D896A92
client_write key = EDD97C074957ADE136D6BAE74AE8193D56C6D83ACDE6A3B365679C5604312A19
server_write key = 94DC0CEB508D81C4E440B626DFE3409A6CF39584E6C5864049FD4EF2A0A30106

Now that we have the full client_write key we can use that key to decrypt the application data messages. But these messages are also fragmented. But since the messages are now encrypted, we cannot simply concatenate the payloads of the records, but we have to decrypt them individually and only concatenate the resulting plaintext.

Analogue to the decryption of the heartbeat message, the first 16 bytes of each encrypted record payload are used as an IV

IV, Ciphertext Plaintext
6297cb6d9afba63ec4c0dd7ac0184570    a9c605307eb5f8ccbe8bbc210ff1ff14943873906fad3eca017f49af8feaec87      557365723A20726FB181CF546350A88ACBE8D0248D6FF07675D1514E03030303
063c60d43e08c4315f261f8a4f06169a    cdb5818d80075143afe83c79b570ab0b349b2e8748f8b767c54c0133331fb886    6F743B0A50617373D6F734D45FB99850CCAF32DF113914FC412C523603030303
cd839b95954fcadf1e60ee983cbe5c21    ac6f6e1fe34ae4b1214cded895db4746b8e38d7960d7d45cb001aab8e18c7fc7    3A20726F6F743B0A937048A265327642BD5626E00E4BC79618F9A95C03030303
8092d75f72b16cb23a856b00c4c39898    8df099441e10dca5e850398e616e4597170796b7202e2a8726862cd760ebacdf    6563686F20224F7769EACFBEEB5EE5D1F0B72306F8C78AD86CB4835003030303
8e9f83b015fce7f9c925b8b64abee426    224a5fbd2d9b8fc6ded34222a943ec0e8e973bcf125b81f918e391a22b4b0e65    6E6564206279204061736E93BFDC5103C8C2FE8C543A72B924212E8403030303
0e24ba11e41bfcf66452dc80221288ce    a66fb3aed9bdc7e08a31a0e7f14e11ce0983ec3d20dd47c179425243b14b08c9    6963306E7A31223B84A3CAFA7980B461DE0A6410D6251551AE401DD903030303
0465fdb05b121cdc08fa01cdacb2c8f4    eff59402f4dbf35a85cc91a6d1264a895cd1b3d2014c91fbba03ec4c85d058c9     0A7375646F20726DB97422D8B30C54CC672FFEC3E9D771D4743D96B903030303
e2ddbbb83fe8318c41c26d57a5813fab    89549a874ff74d83e182de34ecf55fff1a57008afd3a29ef0d839b991143cd2a      202F202D72663B0A996F3F1789CB9B671223E73C66A0BA578D0C0F3203030303
524f5210190f73c984bd6a59b9cf424c    b7f30fafe5ea3ac51b6757c51911e86b0aa1a6bbf4861c961f8463154acea315    0A666C61677B436868BF764B01D2CDCB2C06EA0DFC5443DABB6EC9AE03030303
32765985e2e594cddca3d0f45bd21f49    a5edfe89fdb3782e2af978585c0e27ba3ef90eb658304716237297f97e4e72bc    696D696368616E67FBF32127FA3AF2F97770DE5B9C6D376A254EF51E03030303
e0ae69b1fa54785dc971221fd92215fb    14e918a9e6e37139153be8cb9c16d2a787385746f9a80d0596580ba22eaf254e    61467233346B7D8BE8B903A167C44945E7676BF99D888A4B86FA8E0404040404

The plaintext then has to be de-padded and de-MACed.

Data HMAC Pad:
557365723A20726F    B181CF546350A88ACBE8D0248D6FF07675D1514E    03030303
6F743B0A50617373    D6F734D45FB99850CCAF32DF113914FC412C5236    03030303
3A20726F6F743B0A    937048A265327642BD5626E00E4BC79618F9A95C    03030303
6563686F20224F77    69EACFBEEB5EE5D1F0B72306F8C78AD86CB48350    03030303
6E65642062792040    61736E93BFDC5103C8C2FE8C543A72B924212E84    03030303
6963306E7A31223B    84A3CAFA7980B461DE0A6410D6251551AE401DD9    03030303
0A7375646F20726D    B97422D8B30C54CC672FFEC3E9D771D4743D96B9    03030303
202F202D72663B0A    996F3F1789CB9B671223E73C66A0BA578D0C0F32    03030303
0A666C61677B4368    68BF764B01D2CDCB2C06EA0DFC5443DABB6EC9AE    03030303
696D696368616E67    FBF32127FA3AF2F97770DE5B9C6D376A254EF51E    03030303
61467233346B7D      8BE8B903A167C44945E7676BF99D888A4B86FA8E    0404040404

This then results in the following data:

Data:
557365723A20726F6F743B0A506173733A20726F6F743B0A6563686F20224F776E656420627920406963306E7A31223B0A7375646F20726D202F202D72663B0A0A666C61677B4368696D696368616E6761467233346B7D8B

Which is ASCII for:

User: root;
Pass: root;
echo "Owned by @ic0nz1";
sudo rm / -rf;

flag{ChimichangaFr34k}


Honestly this was quite a journey. But this presented solution is the tedious manual way. There is also a shortcut with which you can skip most of the manual cryptographic operations.

The Shortcut

After you de-fragmented the messages you can patch the PCAP file and then use Wireshark to decrypt the whole session. This way you can get the flag without performing any cryptographic operation after you got the private key. Alternatively you can replay the communication and record it with Wireshark. I will show you the replay of the messages. To recap the de-fragmented messages looks like this:

ClientHello
0100009e0302000000000000004e6f626f64796b6e6f7773696d6163617400000000000000002053746f70206c6f6f6b696e67206e6f7468696e6720746f2066696e64686572650002003501000053000f000101133700154576696c436f7270206b696c6c732070656f706c65000d002c002a010202020302040205020602010102010301040105010601010302030303040305030603ededeeeeefefff01000100

ClientKeyExchange:
1000006600645de166a6d3669bf219365ef3d35410c50283c4dd038a1b6fedf526d5b193453d796f6e63c144bbda62763740468e218916410671318e83da3c2ade5f6da6482b09fca5c823eb4d9933feae17d165a6db0e94bb09574fc1f7b8edcfbcf9e9696b6173f4b6

We should now add new (not fragmented) record header to the previously fragmented message. The messages sent from the server can stay as they are. The ApplicationData from the client can also stay the same. The messages should now look like this

ClientHello
16030200A20100009e0302000000000000004e6f626f64796b6e6f7773696d6163617400000000000000002053746f70206c6f6f6b696e67206e6f7468696e6720746f2066696e64686572650002003501000053000f000101133700154576696c436f7270206b696c6c732070656f706c65000d002c002a010202020302040205020602010102010301040105010601010302030303040305030603ededeeeeefefff01000100

ServerHello / Certificate / ServerHelloDone
160302006A1000006600645de166a6d3669bf219365ef3d35410c50283c4dd038a1b6fedf526d5b193453d796f6e63c144bbda62763740468e218916410671318e83da3c2ade5f6da6482b09fca5c823eb4d9933feae17d165a6db0e94bb09574fc1f7b8edcfbcf9e9696b6173f4b61403020001011603020030cbe6bf1ae7f2bc40a49709a06c0e3149a65b8cd93c2525b5bfa8f696e29880d3447aef3dc9a996ca2aff8be99b1a415716030200309bf02969ca42d203e566bcc696de08fa80e0bfdf44b1b315aed17fe867aed6d0d600c73de59c14beb74b0328eacadcf9

ClientKeyExchange / ChangeCipherSpec / Finished
160302006A1000006600645de166a6d3669bf219365ef3d35410c50283c4dd038a1b6fedf526d5b193453d796f6e63c144bbda62763740468e218916410671318e83da3c2ade5f6da6482b09fca5c823eb4d9933feae17d165a6db0e94bb09574fc1f7b8edcfbcf9e9696b6173f4b61403020001011603020030cbe6bf1ae7f2bc40a49709a06c0e3149a65b8cd93c2525b5bfa8f696e29880d3447aef3dc9a996ca2aff8be99b1a415716030200309bf02969ca42d203e566bcc696de08fa80e0bfdf44b1b315aed17fe867aed6d0d600c73de59c14beb74b0328eacadcf9')

ApplicationData
1703020030063c60d43e08c4315f261f8a4f06169acdb5818d80075143afe83c79b570ab0b349b2e8748f8b767c54c0133331fb8861703020030cd839b95954fcadf1e60ee983cbe5c21ac6f6e1fe34ae4b1214cded895db4746b8e38d7960d7d45cb001aab8e18c7fc717030200308092d75f72b16cb23a856b00c4c398988df099441e10dca5e850398e616e4597170796b7202e2a8726862cd760ebacdf17030200308e9f83b015fce7f9c925b8b64abee426224a5fbd2d9b8fc6ded34222a943ec0e8e973bcf125b81f918e391a22b4b0e6517030200300e24ba11e41bfcf66452dc80221288cea66fb3aed9bdc7e08a31a0e7f14e11ce0983ec3d20dd47c179425243b14b08c917030200300465fdb05b121cdc08fa01cdacb2c8f4eff59402f4dbf35a85cc91a6d1264a895cd1b3d2014c91fbba03ec4c85d058c91703020030e2ddbbb83fe8318c41c26d57a5813fab89549a874ff74d83e182de34ecf55fff1a57008afd3a29ef0d839b991143cd2a1703020030524f5210190f73c984bd6a59b9cf424cb7f30fafe5ea3ac51b6757c51911e86b0aa1a6bbf4861c961f8463154acea315170302003032765985e2e594cddca3d0f45bd21f49a5edfe89fdb3782e2af978585c0e27ba3ef90eb658304716237297f97e4e72bc1703020030e0ae69b1fa54785dc971221fd92215fb14e918a9e6e37139153be8cb9c16d2a787385746f9a80d0596580ba22eaf254e

What we want to do now is create the following conversation:
CH->
<-SH, CERT, SHD
-> CKE, CCS, FIN
-> APP, APP ,APP

This will be enough for Wireshark to decrypt the traffic. However, since we removed some messages (the whole HeartbeatMessages) our HMAC's will be invalid.

We need to record an interleaved transmission of these message with Wireshark. I will use these simple python programs to create the traffic:




If we record these transmissions and tick the flag in Wireshark to ignore invalid HMAC's we can see the plaintext (if we added the private key in Wireshark).

Challenge Creation

I used our TLS-Attacker project to create this challenge. With TLS-Attacker you can send arbitrary TLS messages with arbitrary content in an arbitrary order, save them in XML and replay them. The communication between the peers are therefore only two XML files which are loaded into TLS-Attacker talking to each other. I then copied parts of the key_block from the debug output and the challenge was completed :)

If you have question in regards to the challenge you can DM me at @ic0nz1
Happy HackingRelated news